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USE OF GENERALIZED DIFFUSION COEFFICIENTS
IN SOLVING CONJUGATE PROBLEMS

G. A. Glebov UDC 536.24

A numerical method is used to solve the conjugate problem of the heating of a graphite body
in a high-temperature gas flow.

Calculation of the heating and loss of thermoprotective material when high-temperature gas (air, carbon
dioxide, etc.) flows past an eroding surface involves the solution of a system of differential boundary-layer
equations and the nonsteady heat-conduction equation for a solid. Consider the flow of a chemically reacting
mixture in the vicinity of the forward critical point of a graphite body (Fig. 1). Steady laminar flow of thin
mixture (consisting of v elements and N components) is described by the following system of differential equa-
tions (1]: the continuity equation for the mixture .

2 (pu) *‘a—f, (por) = O; M
the momentum equation
ou ou  dp | 9 ( [ZAW
pu = +pv 5 i + 3 13 6y)' )

the diffusion equation for a chemical element

ac, ac. ok,
T Tl L I o
pu — %=+ pu 5 T oy 0; 3)
k=12 ...,v=1),

where

F:é Mc/M,,K zndMK/M‘,

i=l inx]

the equation of thermochemical equilibrium for a reaction of the type
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(4)

where

!
¢ == ¢;/M;; An= 2 By — L

jo=t

the energy equation

oT
ox

ar

or _ 9
dy

dy

(5

()

and the Stefan—Maxwell equation for the diffusional mass flows disregarding thermo- and barodiffusion

PUCH 15 TPy

(211(,),

dy

N

0% < K %
& = [ 27, D,,a M, = Du(l)J ©
(=1,2 .... N— ).

Closure of the system in equations (6) is achieved using the equation for the sum of vector flows

N -
2 i =0 @
i=1
the Dalton equation
Ve @®)
r ]
=1
the equation of state
pRTIM 9)
where
N o \-1
M= ( ci) 5 (10)
=1 .
and the heat~conduction equation for the body
T, 7} oT,
c = A b 11
B or ayl(bayl) an
The conjugate problem for the heating of the material is solved with the following initial and boundary
conditions:
when T=0 Ty=T 12)
y:O u_v_O Kt,w=
oT ) o
by [ 2 (1K — ,0,T ——x,,,( ) , 13
( y ; [EAY] 0of w b ayl N ( )
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as y—>oo u—»u,; T—>T,, (14)

as Yp—>o0 Tp—>T,. (15)

If several elements are present (v = 3-5), when the number of mixture components may reach 20 or
30, the system in equations (1)-(11)with the initial and boundary conditions inEqs. (12)-(15) is very complex.
In practice, various assumptions and models for the diffusional mass flows are very often used for the
computer realization of such complex systems [2, 3].

The present work employs the method of generalized diffusion coefficients [1], according to which
the diffusional mass flows are written in the explicit form

Ki=—oD; Tyl i (16)

where the generalized diffusion coefficient Dj is given by the expression

_ .G
C B4,
X{I_F[ﬁz(ﬁf ;)_E]Mé_@___ﬁié(ﬁ.ﬁ)}. an
M =1 A] 'j ! ki ()y M J#i A] ay '
N
ﬁ = 2 xjAJ 61 - szzv
i=1
when
0.2 (MM <55
€; 0.08135 0.25 Sj 0.0815 0.25
A =0 (76—) i A= (_k—_) M (18)
.and when
(M;/M;)>5
€; 0.0813 0425
Ai = 0; (_k—) Mi‘ )
g; \00815 M, \0-25
n=a( ) mevE ()T
The mixture parameter G is
G=238-107"T"*p. 19)

Shock wave

M

F1

“ Fig. 1. High-temperature gas flow in

hr vicinity of forward critical point of body.
¥ 7 Kz

Y
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TABLE 1, Comparison of Results for Diffusional Flow Ob-
tained by Accurate and Approximate Methods

T (°K) 2.10% 4.10% 6-102
(Kn,)acc 0,926.10° 0,468.10% 0,387-1077
(Kn,) app 0,90-10~9 0,460.10~8 0,394-1077
(Ko,) acc 0,109-10# 0,408-107 0,726-10710
(Ko,) app 0,108.107# 0,107.1077 0,726-10710.
(Kno) acc —0,177-107% 0,438-1078 0,12.1078
(Kno) app —0,178-108 0,438-1072 0.12:1078
(Ku,) ace -+0.794-1010 0,394-107¢ 0,414-10~10
(Ru,) app +0,798-107% |  0,396-107¢ 0,414-10710
(Kx) ace —0,823.10-% |  —0,691-107° —0,465.1077
(Kn) app @ —0.824-10738 | —0,692-107° —0,472.10~7
(Ko) acc | —0.174:1070 | —0,163-1077 0,409-10-
(Ko) app | --0,174-107° | —0,163-10=7 |  0,410-107%
(Ky) ace —0,148-10"° —0,681-1078 ' 0,241-10"¢
(Kit) app —0,149-107% | —0,687-107° 1 0,242-107¢
% —a

\‘\.\'\N.L e« — b
iz - =

3 ‘ . . .
02’\<_ /. — MY o
4 %Xl'/o/ 5
. 7

f‘\?':‘fé:\ A . W\ ot

g / 2 N 4 q

Fig. 2. Distribution of mixture-component mass concen-
trations across the boundary layer: 1) CN,$ 2) CH3 3) cj,; 4)
co,; 9 ¢coi6) eNos T) cNs 2) accurate solution; b) approxi-
mate solution.

The heating of a graphite sphere is calculated over a wide range of the external flow parameters:
Te = (5-8)-10%°K, Do =1-100 bar, The external flow is a mixture of air and hydrogen (EN = 0.537; 60 =
0.163; ¢y = 0.3), and the multicomponent gas mixture consists of seven components (Ny; O,; NO; Hy; N;
O; H) differing in molecular weight by an order of magnitude. Numerical calculations are carried out
using the accurate system in Eqs. (1)-(11) with the initial and boundary -conditions in Eqs. (12)-(15) and
by the approximate method using generalized diffusion coefficients, as in Eqs. (16)-(19).

Table 1 gives results for the normalized diffusional flow K; = K;/(9T/dy) obtained from Egs. (6) and
(16) for p =1 bar.

It is evident from Table 1 that the generalized-coefficient method gives good accuracy for the diffu-
sional flows. Over the whole temperature range the discrepancy with the accurate results was no more
than 3-4% for all the components.

In Fig. 2, concentration profiles (cj) across the boundary layer are given for all the components,
together with results obtained by the approximate method. There is evidently good agreement. Similarly,
there is good agreement for the temperature profile (Fig. 3), both in the boundary layer and in the body.

Thus, the generalized-coefficient method may successfully be used in calculating heating and the loss
of thermoprotective material.
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Fig. 3. Temperature profile in conjugate problem
{gas—body): a) accurate solution; b) approximate
solution. T, °K.

NOTATION

X, y, coordinates; u, v, velocity components; p, density; p, pressure; ¢,, element concentrations; ci,
mass concentrations of components; x;, molar concentrations of components; I-{r, diffusional mass flows of
elements; K;, diffusional mass flows of components; T, temperature; Cpg¢c, total specific heat of mixture;

M, molecular weights of elements; M;, molecular weights of components; M, molecular weight of mixture;
R, universal gas constant; Dij (1), diffusion coefficient of binary mixture; Dj, generalized diffusion coefficients;
u, viscosity; A, heat conduction.
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CONJUGATE HEAT-EXCHANGE PROBLEM IN THE FLOW
OF A STREAM OF DISSOCIATED AIR OVER A BLUNT
AXISYMMETRIC BODY

E. A. Artyukhin UDC 536.244

An algorithm is constructed and the results of a numerical solution are presented for the
conjugate problem of nonsteady heat exchange in the vicinity of the critical point of a blunt
axisymmetric body during its interaction with a hypersonic airstream.

The nonsteady thermal interaction of an oncoming stream of liquid or gas with a solid body is charac-
terized by the fact that the thermal boundary conditions at the surface over which the flow occurs vary with
time. And these conditions are not known in advance but must be found in the course of the solution of the

problem of nonsteady heat exchange.
The most general approach to the solution of problems of nonsteady convective heat exchange ina

gas—solid body system consists in treating them as conjugate [1, 2]. A system of equations consisting of the
equations for the nonsteady boundary layer for the gaseous zone and the heat-conduction equation for the solid
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